慢性阻塞性肺疾病(慢阻肺)全球创议(global initiative for chronic obstructive lung disease,GOLD)2020年修订版于2019年11月5日发布,其最重要的改变是增加了起始吸入性糖皮质激素治疗需要考虑的因素,调整了慢阻肺管理循环图表,改进了非药物治疗的随访,并明确了慢阻肺急性加重的鉴别诊断。本文对新增内容进行简介和解读。
1998年慢性阻塞性肺疾病(慢阻肺)全球创议(global initiative for chronic obstructive lung disease,GOLD)启动,其目标是根据已发表的最佳研究结果制订慢阻肺的管理推荐。第1版慢阻肺诊断、治疗及预防全球策略于2001年发布,并于2006年和2011年分别根据已发表的研究进行了全面修订。GOLD 2011修订版的修订分别于2013年1月、2014年1月、2015年1月和2016年1月发布,国内呼吸领域相关专家亦分别对其进行了解读[1-4]。2015—2016年,GOLD科学委员会发现,关于慢阻肺的病理生理、诊断、评估和治疗方法有较多新内容出现,因此需要进行全面修订,由写作委员会制订各章节大纲。2016年9月,GOLD科学委员会对各章节进行审阅,然后送至GOLD委员会之外的10名专家处,提出建议并进行修改。GOLD 2017作为第4次全面修订,于2016年11月16日在美国费城举办的GOLD慢阻肺全程管理会议上发布,笔者对GOLD 2017、GOLD2018、GOLD 2019进行了详细解读[5-7]。GOLD 2020是GOLD 2017的第3次修改,检索了2018年1月至2019年7月发表的文献,新增文献62篇,其中有4篇来自中国学者的研究,1篇为合作研究,于2019年11月5日发布。总体来说,GOLD 2020更新幅度较小,与GOLD 2019类似,分为6个章节,GOLD 2020增加起始吸入性糖皮质激素(inhaled corticosteroid,ICS)治疗需要考虑的因素,调整了慢阻肺管理循环图表,改进了非药物治疗的随访,并明确了慢阻肺急性加重的鉴别诊断[8]。2019年11月20日是第18个世界慢阻肺日,主题为“防控慢阻肺,你我携手行(All together, to end COPD)”。本文对GOLD2020重要更新内容进行简介和解读。
1 第一章 慢阻肺定义和概述
关键点:
• 慢阻肺是一种常见的、可预防和可治疗的疾病,其特征在于持续呼吸道症状和气流受限,这是由于气道和/或肺泡异常所致,通常是由于长期暴露于有害颗粒或气体所引起。
• 最常见的呼吸症状包括呼吸困难、咳嗽和/或咳痰。患者对这些症状的报告可能不足。
• 慢阻肺的主要危险因素是吸烟,但其他环境暴露,如生物燃料暴露和空气污染可能参与发病。除暴露外,个体宿主易感性也会导致慢阻肺的发生,其中包括基因异常、肺发育异常和加速衰老。
• 慢阻肺可伴有呼吸系统症状的急性恶化,称为慢阻肺急性加重。
• 大多数慢阻肺患者存在重大的共患慢性病,可增加慢阻肺的致残率和死亡率。
更新要点:
GOLD 2020对于慢阻肺的定义略加修改,强调了宿主因素在慢阻肺发生发展中的作用以及合并症对预后的影响:慢阻肺是一种常见的、可以预防和治疗的异质性疾病,以持续呼吸症状和气流受限为特征,通常是由于暴露于有毒颗粒或气体引起的气道和/或肺泡异常所导致,并受到宿主因素如肺发育异常的影响,合并症可增加慢阻肺的致残率和死亡率。GOLD 2020更新了慢阻肺的疾病负担,指出随着发展中国家吸烟率的升高和高收入国家老龄化加剧,预计慢阻肺的发病率在未来40年仍会继续上升,至2060年可能每年有超过540万人死于慢阻肺及其相关疾病。慢阻肺主要的危险因素是吸烟, GOLD 2020新增影响慢阻肺发生发展的危险因素包括职业暴露、固体燃料、空气污染和铜绿假单胞菌定植。最常见的呼吸症状包括呼吸困难、咳嗽和/ 或咳痰,这些症状可能被患者漏报。慢阻肺的呼吸症状在某一时期迅速恶化称为慢阻肺急性加重。 GOLD 2020新增应该进一步深入研究无气流受限但已出现肺病理改变(如肺气肿)的临床意义。
1.1 职业暴露与慢阻肺
职业暴露因素是慢阻肺重要的、可预防的病因[9,10]。一项基于人群的英国生物样本库队列评价了职业暴露与肺功能的关系,研究人群仅限于从不吸烟者,从而排除了最重要的吸烟混杂因素[11]。在116 375名有完整职业暴露的受试者中,94 551人有肺功能和吸烟信息,发现有 6种职业的慢阻肺风险在从不吸烟和无哮喘的人群中增加,包括“雕刻家、画家”“园丁、公园管理员”“食品、饮料、烟草商”“塑料加工者、铸模者”“农民、渔民”“仓库管理员”,并有暴露-效应趋势。对于从不吸烟的人群,应询问他们的职业暴露,并采取针对性的预防策略,以更好地进行疾病管理。
1.2 固体燃料与呼吸系统疾病发生的风险
虽然横断面研究和病例对照研究发现使用固体燃料造成的室内空气污染与慢阻肺发生风险相关,但不同研究得出的结论不一致。既往几乎没有大规模队列研究证据表明固体燃料的使用与主要呼吸系统疾病的住院率和死亡率之间的关系。中国慢性病前瞻性研究项目(简称CKB)是由中国医学科学院与英国牛津大学联合开展的慢性病国际合作项目[12]。GOLD 2020纳入的研究重点关注固体燃料使用与急性和慢性呼吸系统疾病风险之间的关系。研究对277 838 名既往无重大慢性病的中国不吸烟者进行了队列研究,在9年的随访中,19 823人首次住院或因重大呼吸系统疾病死亡,包括10 553例慢性下呼吸道疾病(chronic lower respiratory disease,CLRD)、4398 例慢阻肺、7324例急性下呼吸道感染(acute lower respiratory tract infection,ALRI)。总体来说,91% 的参与者表示经常做饭,52%使用固体燃料。与清洁燃料使用者相比,固体燃料使用者对主要呼吸系统疾病的校正风险比为1.36(95%CI:1.32 ~ 1.40),而从固体燃料转向清洁燃料的使用者的校正风险比为1.14(95%CI :1.10 ~ 1.17)。使用木材的风险比高于使用煤炭[1.37(95%CI :1.33 ~ 1.41)︰ 1.22(95%CI :1.15 ~ 1.29)],长期使用的风险比升高[ ≥ 40年,1.54(95%CI:1.48 ~ 1.60)︰< 20年, 1.32(95%CI :1.26 ~ 1.3
[1] 黄俊,王广发.慢性阻塞性肺病全球倡议慢性阻塞性肺病指南(2013更新版)解读[J].中国医学前沿杂志(电子版),2013,5(3):58-60.
[2] 金哲,王广发.慢性阻塞性肺疾病全球倡议(2014更新版)解读[J].中国医学前沿杂志(电子版),2014,6(2):94-97.
[3] 陈亚红,王辰.2015年更新版GOLD慢性阻塞性肺疾病诊断、治疗和预防的全球策略简介[J].中国医学前沿杂志(电子版),2015,7(2):34-39.
[4] 庞红燕,杨汀,王辰.2016年更新版GOLD慢性阻塞性肺疾病诊断、治疗和预防的全球策略简介[J].中国医学前沿杂志(电子版),2016,8(7):30-34.
[5] 陈亚红.2017年GOLD慢性阻塞性肺疾病诊断、治疗及预防的全球策略解读[J].中国医学前沿杂志(电子版),2017,9(1):37-47.
[6] 陈亚红.2018年GOLD慢性阻塞性肺疾病诊断、治疗及预防全球策略解读[J]. 中国医学前沿杂志(电子版),2017,9(12):21-33.
[7] 陈亚红.2019年GOLD慢性阻塞性肺疾病诊断、治疗及预防全球策略解读[J]. 中国医学前沿杂志(电子版),2019,11(1):1-14.
[8] Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease 2020 report[EB/OL]. (2019-11-05) [2019-11-30]. https://goldcopd.org/gold-reports/.
[9] Eisner MD, Anthonisen N, Coultas D, et al. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2010, 182(5):693-718.
[10] Paulin LM, Diette GB, Blanc PD, et al. Occupational exposures are associated with worse morbidity in patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2015, 191(5):557-565.
[11] De Matteis S, Jarvis D, Darnton A, et al. The occupations at increased risk of COPD: analysis of lifetime job-histories in the population-based UK Biobank Cohort[J]. Eur Respir J, 2019, 54(1). pii:1900186.
[12] Chan KH, Kurmi OP, Bennett DA, et al. Solid Fuel Use and Risks of Respiratory Diseases. A Cohort Study of 280,000 Chinese Never-Smokers[J]. Am J Respir Crit Care Med, 2019, 199(3):352-361.
[13] Doiron D, de Hoogh K, Probst-Hensch N, et al. Air pollution, lung function and COPD: results from the population-based UK Biobank study[J]. Eur Respir J, 2019, 54(1). pii:1802140.
[14] Eklof J, Sorensen R, Ingebrigtsen TS, et al. Pseudomonas aeruginosa and risk of death and exacerbations in patients with chronic obstructive pulmonary disease: an observational cohort study of 22 053 patients[J]. Clin Microbiol Infect, 2019. [Epub ahead of print]
[15] Colak Y, Nordestgaard BG, Vestbo J, et al. Prognostic significance of chronic respiratory symptoms in individuals with normal spirometry[J]. Eur Respir J, 2019, 54(3). pii:1900734.
[16] Bhatt SP, Balte PP, Schwartz JE, et al. Discriminative Accuracy of FEV1:FVC Thresholds for COPD-Related Hospitalization and Mortality[J]. JAMA, 2019, 321(24):2438-2447.
[17] Lambe T, Adab P, Jordan RE, et al. Model-based evaluation of the long-term cost-effectiveness of systematic case finding for COPD in primary care[J]. Thorax, 2019, 74(8):730-739.
[18] US Preventive Services Task Force (USPSTF), Siu AL, Bibbin s- Domingo K, et al. Screening for Chronic Obstructive Pulmonary Disease: US Preventive Services Task Force Recommendation Statement[J]. JAMA, 2016, 315(13):1372-1377.
[19] Ni W, Bao J, Yang D, et al. Potential of serum procalcitonin in predicting bacterial exacerbation and guiding antibiotic administration in severe COPD exacerbations: a systematic review and meta-analysis[J]. Infect Dis (Lond), 2019, 51(9): 639-650.
[20] Celli BR, Anderson JA, Brook R, et al. Serum biomarkers and outcomes in patients with moderate COPD: a substudy of the randomised SUMMIT trial[J]. BMJ Open Respir Res, 2019, 6(1):e000431.
[21] Agusti A, Fabbri LM, Singh D, et al. Inhaled corticosteroids in COPD: friend or foe?[J]. Eur Respir J, 2018, 52(6). pii:1801219.
[22] Bullen C, Howe C, Laugesen M, et al. Electronic cigarettes for smoking cessation: a randomised controlled trial[J]. Lancet, 2013, 382(9905):1629-1637.
[23] Hajek P, Phillips-Waller A, Przulj D, et al. E-cigarettes compared with nicotine replacement therapy within the UK Stop Smoking Services: the TEC RCT[J]. Health Technol Assess, 2019, 23(43):1-82.
[24] Henry TS, Kanne JP, Kligerman SJ. Imaging of VapingAssociated Lung Disease[J]. N Engl J Med, 2019, 381(15): 1486-1487.
[25] Layden JE, Ghinai I, Pray I, et al. Pulmonary Illness Related to E-Cigarette Use in Illinois and Wisconsin-Preliminary Report[J]. N Engl J Med, 2019. [Epub ahead of print]
[26] Devereux G, Cotton S, Fielding S, et al. Effect of Theophylline as Adjunct to Inhaled Corticosteroids on Exacerbations in Patients With COPD: A Randomized Clinical Trial[J]. JAMA, 2018, 320(15):1548-1559.
[27] Vestbo J, Fabbri L, Papi A, et al. Inhaled corticosteroid containing combinations and mortality in COPD[J]. Eur Respir J, 2018, 52(6). pii:1801230.
[28] Lipson DA, Criner GJ, Day N, et al. Reduction in the Risk of All-Cause Mortality with Fluticasone Furoate/Umeclidinium/Vilanterol Compared to Umeclidinium/Vilanterol in IMPACT Including Previously Missing or Censored Vital Status Data [Rapid Abstract Poster Discussion][J]. Am J Respir Crit Care Med, 2019, 199:A7344.
[29] Ferguson GT, Rabe KF, Martinez FJ, et al. Triple therapy with budesonide/glycopyrrolate/formoterol fumarate with cosuspension delivery technology versus dual therapies in chronic obstructive pulmonary disease (KRONOS): a double-blind, parallel-group, multicentre, phase 3 randomised controlled trial[J]. Lancet Respir Med, 2018, 6(10):747-758.
[30] Ray R, Tombs L, Naya I, et al. Efficacy and safety of the dual bronchodilator combination umeclidinium/vilanterol in COPD by age and airflow limitation severity: A pooled post hoc analysis of seven clinical trials[J]. Pulm Pharmacol Ther, 2019, 57:101802.
[31] Suissa S, Dell'Aniello S, Ernst P. Comparative Effectiveness and Safety of LABA-LAMA vs LABA-ICS Treatment of COPD in Real-World Clinical Practice[J]. Chest, 2019, 155(6):1158-1165.
[32] Criner GJ, Celli BR, Brightling CE, et al. Benralizumab for the Prevention of COPD Exacerbations[J]. N Engl J Med, 2019, 381(11):1023-1034.
[33] Pavord ID, Chanez P, Criner GJ, et al. Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease[J]. N Engl J Med, 2017, 377(17):1613-1629.
[34] Jolliffe DA, Greenberg L, Hooper RL, et al. Vitamin D to prevent exacerbations of COPD: systematic review and metaanalysis of individual participant data from randomised controlled trials[J]. Thorax, 2019, 74(4):337-345.
[35] Pascoe S, Locantore N, Dransfield MT, et al. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials[J]. Lancet Respir Med, 2015, 3(6):435-442.
[36] Poole P, Sathananthan K, Fortescue R. Mucolytic agents versus placebo for chronic bronchitis or chronic obstructive pulmonary disease[J]. Cochrane Database Syst Rev, 2019, 5:CD001287.
[37] Rogliani P, Matera MG, Page C, et al. Efficacy and safety profile of mucolytic/antioxidant agents in chronic obstructive pulmonary disease: a comparative analysis across erdosteine, carbocysteine, and Nacetylcysteine[J]. Respir Res, 2019, 20(1):104.
[38] Cho-Reyes S, Celli BR, Dembek C, et al. Inhalation Technique Errors with Metered-Dose Inhalers Among Patients with Obstructive Lung Diseases: A Systematic Review and MetaAnalysis of U.S. Studies[J]. Chronic Obstr Pulm Dis, 2019, 6(3):267-280.
[39] Sanchis J, Gich I, Pedersen S, et al. Systematic Review of Errors in Inhaler Use: Has Patient Technique Improved Over Time?[J]. Chest, 2016, 150(2):394-406.
[40] Wootton SL, Hill K, Alison JA, et al. Effects of Ongoing Feedback During a 12-Month Maintenance Walking Program on Daily Physical Activity in People with COPD[J]. Lung, 2019, 197(3):315-319.
[41] Gordon CS, Waller JW, Cook RM, et al. Effect of Pulmonary Rehabilitation on Symptoms of Anxiety and Depression in COPD: A Systematic Review and Meta-Analysis[J]. Chest, 2019, 156(1):80-91.
[42] Nolan CM, Kaliaraju D, Jones SE, et al. Home versus outpatient pulmonary rehabilitation in COPD: a propensity-matched cohort study[J]. Thorax, 2019, 74(10):996-998.
[43] Benzo R, McEvoy C. Effect of Health Coaching Delivered by a Respiratory Therapist or Nurse on Self-Management Abilities in Severe COPD: Analysis of a Large Randomized Study[J]. Respir Care, 2019, 64(9):1065-1072.
[44] Gouzi F, Maury J, Heraud N, et al. Additional Effects of Nutritional Antioxidant Supplementation on Peripheral Muscle during Pulmonary Rehabilitation in COPD Patients: A Randomized Controlled Trial[J]. Oxid Med Cell Longev, 2019, 2019:5496346.
[45] van Beers M, Rutten-van Molken M, van de Bool C, et al. Clinical outcome and cost-effectiveness of a 1-year nutritional intervention programme in COPD patients with low muscle mass: The randomized controlled NUTRAIN trial[J]. Clin Nutr, 2019. [Epub ahead of print]
[46] Alison JA, McKeough ZJ, Leung RWM, et al. Oxygen compared to air during exercise training in COPD with exercise induced desaturation[J]. Eur Respir J, 2019, 53(5). pii: 1802429.
[47] Criner GJ, Delage A, Voelker K, et al. Improving Lung Function in Severe Heterogenous Emphysema with the Spiration(R) Valve System (EMPROVE): A Multicenter, OpenLabel, Randomized, Controlled Trial[J]. Am J Respir Crit Care Med, 2019. [Epub ahead of print]
[48] Criner GJ, Sue R, Wright S, et al. A Multicenter Randomized Controlled Trial of Zephyr Endobronchial Valve Treatment in Heterogeneous Emphysema (LIBERATE)[J]. Am J Respir Crit Care Med, 2018, 198(9):1151-1164.
[49] Robinson SA, Shimada SL, Quigley KS, et al. A web-based physical activity intervention benefits persons with low selfefficacy in COPD: results from a randomized controlled trial[J]. J Behav Med, 2019, 42(6):1082-1090.
[50] Gimigliano F, Negrini S. The World Health Organization "Rehabilitation 2030: a call for action"[J]. Eur J Phys Rehabil Med, 2017, 53(2):155-168.
[51] Liang L, Cai Y, Barratt B, et al. Associations between daily air quality and hospitalisations for acute exacerbation of chronic obstructive pulmonary disease in Beijing, 2013-17: an ecological analysis[J]. Lancet Planet Health, 2019, 3(6): e270-e279.
[52] Chen J, Yang J, Zhou M, et al. Cold spell and mortality in 31 Chinese capital cities: Definitions, vulnerability and implications[J]. Environ Int, 2019, 128:271-278.
[53] Bardsley G, Pilcher J, McKinstry S, et al. Oxygen versus airdriven nebulisers for exacerbations of chronic obstructive pulmonary disease: a randomised controlled trial[J]. BMC Pulm Med, 2018, 18(1):157.
[54] Sivapalan P, Ingebrigtsen TS, Rasmussen DB, et al. COPD exacerbations: the impact of long versus short courses of oral corticosteroids on mortality and pneumonia: nationwide data on 67 000 patients with COPD followed for 12 months[J]. BMJ Open Respir Res, 2019, 6(1):e000407.
[55] Waljee AK, Rogers MA, Lin P, et al. Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study[J]. BMJ, 2017, 357: j1415.
[56] Sivapalan P, Lapperre TS, Janner J, et al. Eosinophil-guided corticosteroid therapy in patients admitted to hospital with COPD exacerbation (CORTICO-COP): a multicentre, randomised, controlled, open-label, non-inferiority trial[J]. Lancet Respir Med, 2019, 7(8):699-709.
[57] Butler CC, Gillespie D, White P, et al. C-Reactive Protein Testing to Guide Antibiotic Prescribing for COPD Exacerbations[J]. N Engl J Med, 2019, 381(2):111-120.
[58] Prins HJ, Duijkers R, van der Valk P, et al. CRP-guided antibiotic treatment in acute exacerbations of COPD in hospital admissions[J]. Eur Respir J, 2019, 53(5). pii:1802014.
[59] Mauri T, Turrini C, Eronia N, et al. Physiologic Effects of HighFlow Nasal Cannula in Acute Hypoxemic Respiratory Failure[J]. Am J Respir Crit Care Med, 2017, 195(9):1207-1215.
[60] Braunlich J, Dellweg D, Bastian A, et al. Nasal high-flow versus noninvasive ventilation in patients with chronic hypercapnic COPD[J]. Int J Chron Obstruct Pulmon Dis, 2019, 14:1411-1421.
[61] Bruni A, Garofalo E, Cammarota G, et al. High Flow Through Nasal Cannula in Stable and Exacerbated Chronic Obstructive Pulmonary Disease Patients[J]. Rev Recent Clin Trials, 2019, 14(4):247-260.
[62] Lin H, Lu Y, Lin L, et al. Does chronic obstructive pulmonary disease relate to poor prognosis in patients with lung cancer? A meta-analysis[J]. Medicine (Baltimore), 2019, 98(11):e14837.
[63] Sampaio MS, Vieira WA, Bernardino IM, et al. Chronic obstructive pulmonary disease as a risk factor for suicide: A systematic review and meta-analysis[J]. Respir Med, 2019, 151:11-18.